771 research outputs found

    Daily variability of Ceres' Albedo detected by means of radial velocities changes of the reflected sunlight

    Get PDF
    Bright features have been recently discovered by Dawn on Ceres, which extend previous photometric and Space Telescope observations. These features should produce distortions of the line profiles of the reflected solar spectrum and therefore an apparent radial velocity variation modulated by the rotation of the dwarf planet. Here we report on two sequences of observations of Ceres performed in the nights of 31 July, 26-27 August 2015 by means of the high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The observations revealed a quite complex behaviour which likely combines a radial velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s and an unexpected diurnal effect. The latter changes imply changes in the albedo of Occator's bright features due to the blaze produced by the exposure to solar radiation. The short-term variability of Ceres' albedo is on timescales ranging from hours to months and can both be confirmed and followed by means of dedicated radial velocity observations.Comment: 5 pag, 1fig, two tables, MNRAS Letters 201

    The Refractory-to-Ice Mass Ratio in Comets

    Get PDF
    We review the complex relationship between the dust-to-gas mass ratio usually estimated in the material lost by comets, and the Refractory-to-Ice mass ratio inside the nucleus, which constrains the origin of comets. Such a relationship is dominated by the mass transfer from the perihelion erosion to fallout over most of the nucleus surface. This makes the Refractory-to-Ice mass ratio inside the nucleus up to ten times larger than the dust-to-gas mass ratio in the lost material, because the lost material is missing most of the refractories which were inside the pristine nucleus before the erosion. We review the Refractory-to-Ice mass ratios available for the comet nuclei visited by space missions, and for the Kuiper Belt Objects with well defined bulk density, finding the 1-σ lower limit of 3. Therefore, comets and KBOs may have less water than CI-chondrites, as predicted by models of comet formation by the gravitational collapse of cm-sized pebbles driven by streaming instabilities in the protoplanetary disc

    Volatile exposures on the 67P/Churyumov-Gerasimenko nucleus

    Full text link
    We present the most extensive catalog of exposures of volatiles on the 67P/Churyumov-Gerasimenko nucleus generated from observations acquired with the OSIRIS cameras on board the Rosetta mission. We identified more than 600 volatile exposures on the comet. Bright spots are found isolated on the nucleus or grouped in clusters, usually at the bottom of cliffs, and most of them are small, typically a few square meters or smaller. Several of them are clearly correlated with the cometary activity. We note a number of peculiar exposures of volatiles with negative spectral slope values in the high-resolution post-perihelion images, which we interpret as the presence of large ice grains (>> 1000 μ\mum) or local frosts condensation. We observe a clear difference both in the spectral slope and in the area distributions of the bright spots pre- and post-perihelion, with these last having lower average spectral slope values and a smaller size, with a median surface of 0.7 m2^2, even if the size difference is mainly due to the higher resolution achieved post-perihelion. The minimum duration of the bright spots shows three clusters: an area-independent cluster dominated by short-lifetime frosts; an area-independent cluster with lifetime of 0.5--2 days, probably associated with the seasonal fallout of dehydrated chunks; and an area-dependent cluster with lifetime longer than 2 days consistent with water-driven erosion of the nucleus. Even if numerous bright spots are detected, the total surface of exposed water ice is less than 0.1% of the total 67P nucleus surface, confirming that the 67P surface is dominated by refractory dark terrains, while exposed ice occupies only a tiny fraction. Moreover, the abundance of volatile exposures is six times less in the small lobe than in the big lobe, adding additional evidence to the hypothesis that comet 67P is composed of two distinct bodies.Comment: 24 pages, 19 Figures; paper accepted for publication in Astron. and Astrophysics on February 202

    GIADA performance during Rosetta mission scientific operations at comet 67P

    Get PDF
    The Grain Impact Analyser and Dust Accumulator (GIADA) instrument onboard Rosetta studied the dust environment of comet 67P/Churyumov–Gerasimenko from 3.7 au inbound, through perihelion, to 3.8 au outbound, measuring the dust flow and the dynamic properties of individual particles. GIADA is composed of three subsystems: 1) Grain Detection System (GDS); 2) Impact Sensor (IS); and 3) Micro-Balances System (MBS). Monitoring the subsystems’ performance during operations is an important element for the correct calibration of scientific measurements. In this paper, we analyse the GIADA inflight calibration data obtained by internal calibration devices for the three subsystems during the period from 1 August 2014 to 31 October 2015. The calibration data testify a nominal behaviour of the instrument during these fifteen months of mission; the only exception is a minor loss of sensitivity for one of the two GDS receivers, attributed to dust contamination

    GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov Gerasimenko

    Get PDF
    Context. During the period between 15 September 2014 and 4 February 2015, the Rosetta spacecraft accomplished the circular orbit phase around the nucleus of comet 67P/Churyumov-Gerasimenko (67P). The Grain Impact Analyzer and Dust Accumulator (GIADA) onboard Rosetta monitored the 67P coma dust environment for the entire period. Aims. We aim to describe the dust spatial distribution in the coma of comet 67P by means of in situ measurements. We determine dynamical and physical properties of cometary dust particles to support the study of the production process and dust environment modification. Methods. We analyzed GIADA data with respect to the observation geometry and heliocentric distance to describe the coma dust spatial distribution of 67P, to monitor its activity, and to retrieve information on active areas present on its nucleus. We combined GIADA detection information with calibration activity to distinguish different types of particles that populate the coma of 67P: compact particles and fluffy porous aggregates. By means of particle dynamical parameters measured by GIADA, we studied the dust acceleration region. Results. GIADA was able to distinguish different types of particles populating the coma of 67P: compact particles and fluffy porous aggregates. Most of the compact particle detections occurred at latitudes and longitudes where the spacecraft was in view of the comet’s neck region of the nucleus, the so-called Hapi region. This resulted in an oscillation of the compact particle abundance with respect to the spacecraft position and a global increase as the comet moved from 3.36 to 2.43 AU heliocentric distance. The speed of these particles, having masses from 10-10 to 10-7 kg, ranged from 0.3 to 12.2 m s−1. The variation of particle mass and speed distribution with respect to the distance from the nucleus gave indications of the dust acceleration region. The influence of solar radiation pressure on micron and submicron particles was studied. The integrated dust mass flux collected from the Sun direction, that is, particles reflected by solar radiation pressure, was three times higher than the flux coming directly from the comet nucleus. The awakening 67P comet shows a strong dust flux anisotropy, confirming what was suggested by on-ground dust coma observations performed in 2008

    Myomir dysregulation and reactive oxygen species in aged human satellite cells

    Get PDF
    Satellite cells that reside on the myofibre surface are crucial for the muscle homeostasis and regeneration. Aging goes along with a less effective regeneration of skeletal muscle tissue mainly due to the decreased myogenic capability of satellite cells. This phenomenon impedes proper maintenance and contributes to the age-associated decline in muscle mass, known as sarcopenia. The myogenic potential impairment does not depend on a reduced myogenic cell number, but mainly on their difficulty to complete a differentiation program. The unbalanced production of reactive oxygen species in elderly people could be responsible for skeletal muscle impairments. microRNAs are conserved post-transcriptional regulators implicated in numerous biological processes including adult myogenesis. Here, we measure the ROS level and analyze myomiR (miR-1, miR-133b and miR-206) expression in human myogenic precursors obtained from Vastus lateralis of elderly and young subjects to provide the molecular signature responsible for the differentiation impairment of elderly activated satellite cells. publisher: Elsevier articletitle: Myomir dysregulation and reactive oxygen species in aged human satellite cells journaltitle: Biochemical and Biophysical Research Communications articlelink: http://dx.doi.org/10.1016/j.bbrc.2016.03.030 content_type: article copyright: Copyright © 2016 The Authors. Published by Elsevier Inc. ispartof: Biochemical and Biophysical Research Communications vol:473 issue:2 pages:462-70 ispartof: location:United States status: publishe

    Study on normal and otosclerotic bone cell cultures: an advance in understanding the pathogenesis of otosclerosis

    Get PDF
    The authors first reviewed the main theories concerning the pathogenesis of otosclerosis and studied the morphologic and functional characteristics of cell cultures derived from normal and otosclerotic bones. Light transmission and scanning electron microscopy did not permit definite identification of the cultured cells as predominantly osteoblasts, nor did these techniques show significant differences between cultured cells derived from normal and pathologic bone. Functional tests of the cell cultures proved more interesting. First, the bony nature of the cultured cells was demonstrated by studying the intracellular 45Ca++ uptake after stimulation with calcitonin and dybutryl-cAMP. Second, cell cultures derived from otosclerotic bone behaved differently from those derived from normal bone. Their peak uptake of calcium appeared later, and post-stimulatory values were higher, suggesting that cells derived from otosclerotic bone store a greater quantity of 45Ca++. Furthermore, after stimulation with calcitonin and propranolol, we observed an inhibition of the calcium uptake and decreased intracellular cAMP levels in normal bone cell cultures. In contrast, the cell cultures derived from otosclerotic bone exhibited an initial inhibition of calcium absorption followed by massive calcium penetration. The response of adenylate cyclase to the action of Mg++, Ca++, and F− ions was evaluated in cultures derived from normal bone, otosclerotic bone, and normal skin fibroblasts. The resulting data show that activation due to Mg++ is much lower in cultured cells derived from otosclerotic bone than in those from either normal bone or skin fibroblasts. No significant differences were found after Ca++ inhibition in any of the cell cultures. Moreover, in cell cultures derived from normal bone, F− ions induced a strong activation that was lower than the levels observed in cultures of otosclerotic bone or in normal fibroblasts. We hypothesize that an alteration at the calcitonin receptor site is responsible for the difference in calcium uptake and cAMP levels observed in the cells derived from otosclerotic bone as compared to those cultured from normal cells

    The dust-to-ices ratio in comets and Kuiper belt objects

    Get PDF
    Comet 67P/Churyumov-Gerasimenko (67P hereinafter) is characterized by a dust transfer from the southern hemi-nucleus to the night-side northern dust deposits, which constrains the dust-to-ices mass ratio inside the nucleus to values a factor of 2 larger than that provided by the lost mass of gas and non-volatiles. This applies to all comets because the gas density in all night comae cannot prevent the dust fallback. Taking into account Grain Impact Analyser and Dust Accumulator (GIADA) data collected during the entire Rosetta mission, we update the average dust bulk density to ρD=785 +520/−115 ρD=785115+520\rho {}{}_{\rm D} = 785_{-115}^{+520} kg m3^-3 that, coupled to the 67P nucleus bulk density, confirms an average dust-to-ices mass ratio δ = 7.5 inside 67P. The improved dust densities are consistent with a mixture of (20 ± 8) per cent of ices, (4 ± 1) per cent of Fe sulphides, (22 ± 2) per cent of silicates and (54 ± 5) per cent of hydrocarbons, on average volume abundances. These values correspond to solar chemical abundances, as suggested by the elemental C/Fe ratio observed in 67P. The ice content in 67P matches that inferred in Kuiper belt objects, (20 ± 12) per cent on average volume abundance and suggests a water content in all trans-Neptunian objects lower than in CI chondrites. The 67P icy pebbles and the dust collected by GIADA have a microporosity of (49 ± 5) and (59 ± 8) per cent, respectively

    On the similarity of dust flows in the inner coma of comets

    Get PDF
    The atmosphere of a comet is formed by the sublimation, due to solar illumination, of its volatile component and the dust particles ejected from its nucleus and entrained by the gas flow. Contemporary dusty-gas coma models take into account numerous physical processes occurring in the coma and a complex geometry of the nucleus. For the description of the dusty-gas flow in the coma, such models introduce a large number of governing parameters characterizing physical properties and processes. The relative role of these processes is not easy to ascribe therefore a relevant inter-comparison of model results becomes difficult. The present work introduces a set of universal, dimensionless parameters, which characterize the dust motion in the inner cometary coma. This approach allows one to: (i) reduce the number of parameters for analysis; (ii) reveal dust flows similarities; (iii) rescale the available numerical solutions. The present work demonstrates application of this approach to a realistic coma model. Description of dust motion with dimensionless parameters allows us to make a parametric study for a broad range of conditions and to find simple analytic approximations (via a polynomial function) of the numerical results suitable for rough estimations of dust density in the coma
    corecore